Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108620, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188518

RESUMO

Mosquito borne flaviviruses such as dengue and Zika represent a major public health problem due to globalization and propagation of susceptible vectors worldwide. Vertebrate host responses to dengue and Zika infections include the processing and release of pro-inflammatory cytokines through the activation of inflammasomes, resulting in disease severity and fatality. Mosquito saliva can facilitate pathogen infection by downregulating the host's immune response. However, the role of mosquito saliva in modulating host innate immune responses remains largely unknown. Here, we show that mosquito salivary gland extract (SGE) inhibits dengue and Zika virus-induced inflammasome activation by reducing NLRP3 expression, Caspase-1 activation, and 1L-1ß secretion in cultured human and mice macrophages. As a result, we observe that SGE inhibits virus detection in the early phase of infection. This study provides important insights into how mosquito saliva modulates host innate immunity during viral infection.

2.
mBio ; : e0228923, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909749

RESUMO

Mosquito saliva facilitates blood meal acquisition through pharmacologically active compounds that prevent host hemostasis and immune responses. Here, we generated two knockout (KO) mosquito lines by CRISPR/Cas9 to functionally characterize D7L1 and D7L2, two abundantly expressed salivary proteins from the yellow fever mosquito vector Aedes aegypti. The D7s bind and scavenge biogenic amines and eicosanoids involved in hemostasis at the bite site. The absence of D7 proteins in the salivary glands of KO mosquitoes was confirmed by mass spectrometry, enzyme-linked immunosorbent assay, and fluorescence microscopy of the salivary glands with specific antibodies. D7-KO mosquitoes had longer probing times than parental wildtypes. The differences in probing time were abolished when mutant mice resistant to inflammatory insults were used. These results confirmed the role of D7 proteins as leukotriene scavengers in vivo. We also investigated the role of D7 salivary proteins in Plasmodium gallinaceum infection and transmission. Both KO lines had significantly fewer oocysts per midgut. We hypothesize that the absence of D7 proteins in the midgut of KO mosquitoes might be responsible for creating a harsh environment for the parasite. The information generated by this work highlights the biological functionality of salivary gene products in blood feeding and pathogen infection. IMPORTANCE During blood feeding, mosquitoes inject saliva into the host skin, preventing hemostasis and inflammatory responses. D7 proteins are among the most abundant components of the saliva of blood-feeding arthropods. Aedes aegypti, the vector of yellow fever and dengue, expresses two D7 long-form salivary proteins: D7L1 and D7L2. These proteins bind and counteract hemostatic agonists such as biogenic amines and leukotrienes. D7L1 and D7L2 knockout mosquitoes showed prolonged probing times and carried significantly less Plasmodium gallinaceum oocysts per midgut than wild-type mosquitoes. We hypothesize that reingested D7s play a vital role in the midgut microenvironment with important consequences for pathogen infection and transmission.

3.
Front Immunol ; 14: 1163367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469515

RESUMO

Background: Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. Materials and methods: A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. Results: Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. Conclusion: The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.


Assuntos
Hemostáticos , Simuliidae , Camundongos , Humanos , Animais , Células Endoteliais , Hemostasia , Anti-Inflamatórios/farmacologia , Inflamação , Proteínas e Peptídeos Salivares/farmacologia , Mamíferos
5.
Immunohorizons ; 6(6): 373-383, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738824

RESUMO

Blood-feeding arthropods secrete potent salivary molecules, which include platelet aggregation inhibitors, vasodilators, and anticoagulants. Among these molecules, Alboserpin, the major salivary anticoagulant from the mosquito vector Aedes albopictus, is a specific inhibitor of the human coagulation factor Xa (FXa). In this study, we investigated the anti-inflammatory properties of Alboserpin, in vitro and in vivo. In vitro, Alboserpin inhibited FXa-induced protease-activated receptor (PAR)-1, PAR-2, PAR-3, VCAM, ICAM, and NF-κB gene expression in primary dermal microvascular endothelial cells. Alboserpin also prevented FXa-stimulated ERK1/2 gene expression and subsequent inflammatory cytokine release (MCP-1, TNF-α, IL-6, IL-8, IL-1ß, IL-18). In vivo, Alboserpin reduced paw edema induced by FXa and subsequent release of inflammatory cytokines (CCL2, MCP-1, IL-1α, IL-6, IL-1ß). Alboserpin also reduced FXa-induced endothelial permeability in vitro and in vivo. These findings show that Alboserpin is a potent anti-inflammatory molecule, in vivo and in vitro, and may play a significant role in blood feeding.


Assuntos
Aedes , Aedes/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anticoagulantes/farmacologia , Citocinas , Células Endoteliais/metabolismo , Humanos , Interleucina-6 , Mosquitos Vetores , Receptor PAR-1/genética , Receptor PAR-1/metabolismo
6.
Cell Rep ; 39(2): 110648, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417706

RESUMO

Saliva from mosquitoes contains vasodilators that antagonize vasoconstrictors produced at the bite site. Sialokinin is a vasodilator present in the saliva of Aedes aegypti. Here, we investigate its function and describe its mechanism of action during blood feeding. Sialokinin induces nitric oxide release similar to substance P. Sialokinin-KO mosquitoes produce lower blood perfusion than parental mosquitoes at the bite site during probing and have significantly longer probing times, which result in lower blood feeding success. In contrast, there is no difference in feeding between KO and parental mosquitoes when using artificial membrane feeders or mice that are treated with a substance P receptor antagonist, confirming that sialokinin interferes with host hemostasis via NK1R signaling. While sialokinin-KO saliva does not affect virus infection in vitro, it stimulates macrophages and inhibits leukocyte recruitment in vivo. This work highlights the biological functionality of salivary proteins in blood feeding.


Assuntos
Aedes , Animais , Biologia , Camundongos , Saliva , Proteínas e Peptídeos Salivares
7.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215815

RESUMO

Aedes aegypti mosquitoes are important vectors of several debilitating and deadly arthropod-borne (arbo) viruses, including Yellow Fever virus, Dengue virus, West Nile virus and Zika virus (ZIKV). Arbovirus transmission occurs when an infected mosquito probes the host's skin in search of a blood meal. Salivary proteins from mosquitoes help to acquire blood and have also been shown to enhance pathogen transmission in vivo and in vitro. Here, we evaluated the interaction of mosquito salivary proteins with ZIKV by surface plasmon resonance and enzyme-linked immunosorbent assay. We found that three salivary proteins AAEL000793, AAEL007420, and AAEL006347 bind to the envelope protein of ZIKV with nanomolar affinities. Similar results were obtained using virus-like particles in binding assays. These interactions have no effect on viral replication in cultured endothelial cells and keratinocytes. Additionally, we found detectable antibody levels in ZIKV and DENV serum samples against the recombinant proteins that interact with ZIKV. These results highlight complex interactions between viruses, salivary proteins and antibodies that could be present during viral transmissions.


Assuntos
Aedes/metabolismo , Proteínas de Insetos/metabolismo , Mosquitos Vetores/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas do Envelope Viral/metabolismo , Zika virus/metabolismo , Aedes/química , Aedes/genética , Aedes/virologia , Animais , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Queratinócitos/metabolismo , Queratinócitos/virologia , Cinética , Mosquitos Vetores/química , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Ligação Proteica , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Replicação Viral , Zika virus/química , Zika virus/genética
8.
J Neuroinflammation ; 19(1): 9, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991625

RESUMO

BACKGROUND: Gangliosides are glycosphingolipids highly enriched in the brain, with important roles in cell signaling, cell-to-cell communication, and immunomodulation. Genetic defects in the ganglioside biosynthetic pathway result in severe neurodegenerative diseases, while a partial decrease in the levels of specific gangliosides was reported in Parkinson's disease and Huntington's disease. In models of both diseases and other conditions, administration of GM1-one of the most abundant gangliosides in the brain-provides neuroprotection. Most studies have focused on the direct neuroprotective effects of gangliosides on neurons, but their role in other brain cells, in particular microglia, is not known. In this study we investigated the effects of exogenous ganglioside administration and modulation of endogenous ganglioside levels on the response of microglia to inflammatory stimuli, which often contributes to initiation or exacerbation of neurodegeneration. METHODS: In vitro studies were performed using BV2 cells, mouse, rat, and human primary microglia cultures. Modulation of microglial ganglioside levels was achieved by administration of exogenous gangliosides, or by treatment with GENZ-123346 and L-t-PDMP, an inhibitor and an activator of glycolipid biosynthesis, respectively. Response of microglia to inflammatory stimuli (LPS, IL-1ß, phagocytosis of latex beads) was measured by analysis of gene expression and/or secretion of pro-inflammatory cytokines. The effects of GM1 administration on microglia activation were also assessed in vivo in C57Bl/6 mice, following intraperitoneal injection of LPS. RESULTS: GM1 decreased inflammatory microglia responses in vitro and in vivo, even when administered after microglia activation. These anti-inflammatory effects depended on the presence of the sialic acid residue in the GM1 glycan headgroup and the presence of a lipid tail. Other gangliosides shared similar anti-inflammatory effects in in vitro models, including GD3, GD1a, GD1b, and GT1b. Conversely, GM3 and GQ1b displayed pro-inflammatory activity. The anti-inflammatory effects of GM1 and other gangliosides were partially reproduced by increasing endogenous ganglioside levels with L-t-PDMP, whereas inhibition of glycolipid biosynthesis exacerbated microglial activation in response to LPS stimulation. CONCLUSIONS: Our data suggest that gangliosides are important modulators of microglia inflammatory responses and reveal that administration of GM1 and other complex gangliosides exerts anti-inflammatory effects on microglia that could be exploited therapeutically.


Assuntos
Anti-Inflamatórios/farmacologia , Gangliosídeo G(M1)/farmacologia , Inflamação/patologia , Microglia/efeitos dos fármacos , Animais , Células Cultivadas , Dioxanos/farmacologia , Humanos , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Fagocitose/efeitos dos fármacos , Pirrolidinas/farmacologia , Ratos
9.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884537

RESUMO

The PIWI-interacting RNA (piRNA) pathway provides an RNA interference (RNAi) mechanism known from Drosophila studies to maintain the integrity of the germline genome by silencing transposable elements (TE). Aedes aegypti mosquitoes, which are the key vectors of several arthropod-borne viruses, exhibit an expanded repertoire of Piwi proteins involved in the piRNA pathway, suggesting functional divergence. Here, we investigate RNA-binding dynamics and subcellular localization of A. aegypti Piwi4 (AePiwi4), a Piwi protein involved in antiviral immunity and embryonic development, to better understand its function. We found that AePiwi4 PAZ (Piwi/Argonaute/Zwille), the domain that binds the 3' ends of piRNAs, bound to mature (3' 2' O-methylated) and unmethylated RNAs with similar micromolar affinities (KD = 1.7 ± 0.8 µM and KD of 5.0 ± 2.2 µM, respectively; p = 0.05) in a sequence independent manner. Through site-directed mutagenesis studies, we identified highly conserved residues involved in RNA binding and found that subtle changes in the amino acids flanking the binding pocket across PAZ proteins have significant impacts on binding behaviors, likely by impacting the protein secondary structure. We also analyzed AePiwi4 subcellular localization in mosquito tissues. We found that the protein is both cytoplasmic and nuclear, and we identified an AePiwi4 nuclear localization signal (NLS) in the N-terminal region of the protein. Taken together, these studies provide insights on the dynamic role of AePiwi4 in RNAi and pave the way for future studies aimed at understanding Piwi interactions with diverse RNA populations.


Assuntos
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Elementos de DNA Transponíveis , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , RNA Interferente Pequeno/metabolismo , Aedes , Sequência de Aminoácidos , Animais , Proteínas Argonautas/genética , Núcleo Celular/genética , Proteínas de Insetos/genética , Mosquitos Vetores , Conformação Proteica , RNA Interferente Pequeno/genética , Homologia de Sequência
10.
Front Immunol ; 11: 538240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193307

RESUMO

Dengue virus infection (DENV-2) is transmitted by infected mosquitoes via the skin, where many dermal and epidermal cells are potentially susceptible to infection. Most of the cells in an area of infection will establish an antiviral microenvironment to control viral replication. Although cumulative studies report permissive DENV-2 infection in dendritic cells, keratinocytes, and fibroblasts, among other cells also infected, little information is available regarding cell-to-cell crosstalk and the effect of this on the outcome of the infection. Therefore, our study focused on understanding the contribution of fibroblast and dendritic cell crosstalk to the control or promotion of dengue. Our results suggest that dendritic cells promote an antiviral state over fibroblasts by enhancing the production of type I interferon, but not proinflammatory cytokines. Infected and non-infected fibroblasts promoted partial dendritic cell maturation, and the fibroblast-matured cells were less permissive to infection and showed enhanced type I interferon production. We also observed that the soluble mediators produced by non-infected or Poly (I:C) transfected fibroblasts induced allogenic T cell proliferation, but mediators produced by DENV-2 infected fibroblasts inhibited this phenomenon. Additionally, the effects of fibroblast soluble mediators on CD14+ monocytes were analyzed to assess whether they affected the differentiation of monocyte derived dendritic cells (moDC). Our data showed that mediators produced by infected fibroblasts induced variable levels of monocyte differentiation into dendritic cells, even in the presence of recombinant GM-CSF and IL-4. Cells with dendritic cell-like morphology appeared in the culture; however, flow cytometry analysis showed that the mediators did not fully downregulate CD14 nor did they upregulate CD1a. Our data revealed that fibroblast-dendritic cell crosstalk promoted an antiviral response mediated manly by type I interferons over fibroblasts. Furthermore, the maturation of dendritic cells and T cell proliferation were promoted, which was inhibited by DENV-2-induced mediators. Together, our results suggest that activation of the adaptive immune response is influenced by the crosstalk of skin resident cells and the intensity of innate immune responses established in the microenvironment of the infected skin.


Assuntos
Comunicação Celular/imunologia , Células Dendríticas/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Derme/imunologia , Fibroblastos/imunologia , Adulto , Antígenos CD1/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Dengue/patologia , Derme/patologia , Derme/virologia , Feminino , Fibroblastos/patologia , Fibroblastos/virologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interferon Tipo I/imunologia , Interleucina-4/imunologia , Receptores de Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade
11.
Artigo em Inglês | MEDLINE | ID: mdl-33014899

RESUMO

Dengue is an acute febrile disease triggered by dengue virus. Dengue is the widespread and rapidly transmitted mosquito-borne viral disease of humans. Diverse symptoms and diseases due to Dengue virus (DENV) infection ranges from dengue fever, dengue hemorrhagic fever (life-threatening) and dengue shock syndrome characterized by shock, endothelial dysfunction and vascular leakage. Several studies have linked the severity of dengue with the induction of inflammasome. DENV activates the NLRP3-specific inflammasome in DENV infected human patients, mice; specifically, mouse bone marrow derived macrophages (BMDMs), dendritic cells, endothelial cells, human peripheral blood mononuclear cells (PBMCs), keratinocytes, monocyte-differentiated macrophages (THP-1), and platelets. Dengue virus mediated inflammasome initiates the maturation of IL-1ß and IL-18, which are critical for dengue pathology and inflammatory response. Several studies have reported the molecular mechanism through which (host and viral factors) dengue induces inflammasome, unravels the possible mechanisms of DENV pathogenesis and sets up the stage for the advancement of DENV therapeutics. In this perspective article, we discuss the potential implications and our understanding of inflammasome mechanisms of dengue virus and highlight research areas that have potential to inhibit the pathogenesis of viral diseases, specifically for dengue.


Assuntos
Vírus da Dengue , Dengue , Inflamassomos , Animais , Vírus da Dengue/patogenicidade , Células Endoteliais , Humanos , Leucócitos Mononucleares , Camundongos , Índice de Gravidade de Doença
12.
Biomolecules ; 10(10)2020 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992542

RESUMO

Mosquitoes inject saliva into the host skin to facilitate blood meal acquisition through active compounds that prevent hemostasis. D7 proteins are among the most abundant components of the mosquito saliva and act as scavengers of biogenic amines and eicosanoids. Several members of the D7 family have been characterized at the biochemical level; however, none have been studied thus far in Aedes albopictus, a permissive vector for several arboviruses that causes extensive human morbidity and mortality. Here, we report the binding capabilities of a D7 long form protein from Ae. albopictus (AlboD7L1) by isothermal titration calorimetry and compared its model structure with previously solved D7 structures. The physiological function of AlboD7L1 was demonstrated by ex vivo platelet aggregation and in vivo leukocyte recruitment experiments. AlboD7L1 binds host hemostasis agonists, including biogenic amines, leukotrienes, and the thromboxane A2 analog U-46619. AlboD7L1 protein model predicts binding of biolipids through its N-terminal domain, while the C-terminal domain binds biogenic amines. We demonstrated the biological function of AlboD7L1 as an inhibitor of both platelet aggregation and cell recruitment of neutrophils and eosinophils. Altogether, this study reinforces the physiological relevance of the D7 salivary proteins as anti-hemostatic and anti-inflammatory molecules that help blood feeding in mosquitoes.


Assuntos
Aedes/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Inflamação/genética , Proteínas de Insetos/química , Animais , Hemostasia/efeitos dos fármacos , Humanos , Inflamação/prevenção & controle , Proteínas de Insetos/genética , Proteínas de Insetos/farmacologia , Leucócitos/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Saliva/química , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/farmacologia
13.
ACS Chem Neurosci ; 11(23): 3937-3954, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32662978

RESUMO

Belladonna has diverse pharmacotherapeutic properties with a shadowy history of beauty, life, and death. Alkaloids present in belladonna have anti-inflammatory, anticholinergic, antispasmodic, mydriatic, analgesic, anticonvulsant, and antimicrobial activities, which makes it widely applicable for the treatment of various diseases. However, because of its associated toxicity, the medicinal use of belladonna is debatable. Therefore, an evidence-based systematic review was planned to elucidate the pharmacotherapeutic potential of belladonna. A comprehensive literature search was performed in PubMed, MEDLINE, the Cochrane database, Embase, and ClinicalTrials.gov using the keywords "belladonna", "belladonna and clinical trials", and "safety and efficacy of belladonna". Articles published from 1965 to 2020 showing the efficacy of belladonna in diverse clinical conditions are included. The quality of evidence was generated using the GRADE approach, and 20 studies involving 2302 patients were included for the systematic review. Our analyses suggest that belladonna treatment appears to be safe and effective in various disease conditions, including acute encephalitis syndrome, urethral stent pain, myocardial ischemia injury, airway obstructions during sleep in infants, climacteric complaints, irritable bowel syndrome, and throbbing headache. However, better understanding of the dosage and the toxicity of tropane alkaloids of belladonna could make it an efficient remedy for treating diverse medical conditions.

14.
Front Immunol ; 11: 352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210961

RESUMO

Dengue is the most prevalent and rapidly transmitted mosquito-borne viral disease of humans. One of the fundamental innate immune responses to viral infections includes the processing and release of pro-inflammatory cytokines such as interleukin (IL-1ß and IL-18) through the activation of inflammasome. Dengue virus stimulates the Nod-like receptor (NLRP3-specific inflammasome), however, the specific mechanism(s) by which dengue virus activates the NLRP3 inflammasome is unknown. In this study, we investigated the activation of the NLRP3 inflammasome in endothelial cells (HMEC-1) following dengue virus infection. Our results showed that dengue infection as well as the NS2A and NS2B protein expression increase the NLRP3 inflammasome activation, and further apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) oligomerization, and IL-1ß secretion through caspase-1 activation. Specifically, we have demonstrated that NS2A and NS2B, two proteins of dengue virus that behave as putative viroporins, were sufficient to stimulate the NLRP3 inflammasome complex in lipopolysaccharide (LPS)-primed endothelial cells. In summary, our observations provide insight into the dengue-induced inflammatory response mechanism and highlight the importance of DENV-2 NS2A and NS2B proteins in activation of the NLRP3 inflammasome during dengue virus infection.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Células Endoteliais/fisiologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular Transformada , Dengue/virologia , Vírus da Dengue/patogenicidade , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas Viroporinas/genética , Virulência
15.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30170814

RESUMO

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Francisella/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Inflamassomos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato , Potássio/metabolismo , RNA Interferente Pequeno/genética
17.
Immunol Res ; 64(5-6): 1101-1117, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27699580

RESUMO

A complex interplay between pathogen and host determines the immune response during viral infection. A set of cytosolic sensors are expressed by immune cells to detect viral infection. NOD-like receptors (NLRs) comprise a large family of intracellular pattern recognition receptors. Members of the NLR family assemble into large multiprotein complexes, termed inflammasomes, which induce downstream immune responses to specific pathogens, environmental stimuli, and host cell damage. Inflammasomes are composed of cytoplasmic sensor molecules such as NLRP3 or absent in melanoma 2 (AIM2), the adaptor protein ASC (apoptosis-associated speck-like protein containing caspase recruitment domain), and the effector protein procaspase-1. The inflammasome operates as a platform for caspase-1 activation, resulting in caspase-1-dependent proteolytic maturation and secretion of interleukin (IL)-1ß and IL-18. This, in turn, activates the expression of other immune genes and facilitates lymphocyte recruitment to the site of primary infection, thereby controlling invading pathogens. Moreover, inflammasomes counter viral replication and remove infected immune cells through an inflammatory cell death, program termed as pyroptosis. As a countermeasure, viral pathogens have evolved virulence factors to antagonise inflammasome pathways. In this review, we discuss the role of inflammasomes in sensing viral infection as well as the evasion strategies that viruses have developed to evade inflammasome-dependent immune responses. This information summarises our understanding of host defence mechanisms against viruses and highlights research areas that can provide new approaches to interfere in the pathogenesis of viral diseases.


Assuntos
Caspase 1/metabolismo , Inflamassomos/imunologia , Inflamação/imunologia , Piroptose , Viroses/imunologia , Animais , Humanos , Evasão da Resposta Imune , Inflamação/virologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Fatores de Virulência/imunologia , Replicação Viral/imunologia
18.
Virol J ; 13: 1, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728778

RESUMO

BACKGROUND: One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function. METHODS: We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes. RESULTS: The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes. CONCLUSIONS: Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Vírus da Dengue/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas não Estruturais Virais/farmacologia , Sequência de Aminoácidos , Vírus da Dengue/genética , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação
19.
Future Virol ; 7(6): 609-620, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22844345

RESUMO

HIV-1 Nef protein is an approximately 27-kDa myristoylated protein that is a virulence factor essential for efficient viral replication and infection in CD4(+) T cells. The functions of CD4(+) T cells are directly impeded after HIV infection. HIV-1 Nef plays a crucial role in manipulating host cellular machinery and in HIV pathogenesis by reducing the ability of infected lymphocytes to form immunological synapses by promoting virological synapses with APCs, and by affecting T-cell stimulation. This article reviews the current status of the efficient Nef-mediated spread of virus in the unreceptive environment of the immune system by altering CD4(+) T-lymphocyte signaling, intracellular trafficking, cell migration and apoptotic pathways.

20.
Future Virol ; 7(2): 117-120, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847689
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...